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Abstract

Population stratification has long been recognized as a confounding factor in genetic as-

sociation studies. Estimated ancestries, derived from multi-locus genotype data, can be

used as covariates to correct for population stratification. One popular technique for esti-

mation of ancestry is the model-based approach embodied by the widely-applied program

structure. Another approach, implemented in the program eigenstrat, relies on prin-

cipal component analysis rather than model-based estimation and does not directly deliver

admixture fractions. eigenstrat has gained in popularity in part due to its remarkable

speed in comparison to structure. We present a new algorithm and a program, ad-

mixture, for model-based estimation of ancestry in unrelated individuals. admixture

adopts the likelihood model embedded in structure. However, admixture runs consid-

erably faster, solving problems in minutes that take structure hours. In many of our

experiments we have found that admixture is almost as fast as eigenstrat. The run-

time improvements of admixture rely on a fast block relaxation scheme using sequential

quadratic programming for block updates, coupled with a novel quasi-Newton acceleration

of convergence. Our algorithm also runs faster and with greater accuracy than the imple-

mentation of an Expectation-Maximization (EM) algorithm incorporated in the program

frappe. Our simulations show that admixture’s maximum likelihood estimates of the

underlying admixture coefficients and ancestral allele frequencies are as accurate as struc-

ture’s Bayesian estimates. On real world datasets, admixture’s estimates are directly

comparable to those from structure and eigenstrat. Taken together, our results show

that admixture’s computational speed opens up the possibility of using a much larger set



of markers in model-based ancestry estimation and that its estimates are suitable for use

in correcting for population stratification in association studies.
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1 Introduction

Population stratification has long been recognized as a confounding factor in genetic as-

sociation studies (Knowler et al., 1988; Li, 1972; Marchini et al., 2004). To correct for

the effects of population stratification, association studies may take account of individuals’

ancestries in their analyses, an approach known as structured association (Pritchard and

Donnelly, 2001). One simple technique is to incorporate ancestry as an additional covari-

ate in an appropriate regression model (Price et al., 2006). Self-reported ancestries can be

used for this purpose, but these are often vague or inaccurate. An alternative is to estimate

ancestries from the genotypes actually collected in a study.

We offer the following taxonomy of ancestry estimation tools. At the highest level,

we make a distinction between estimating global ancestry and local ancestry. In the local

ancestry paradigm (Falush et al., 2003; Patterson et al., 2004; Sankararaman et al., 2008a,b;

Tang et al., 2006), we imagine each person’s genome is divided into chromosome segments

of definite ancestral origin. The goal is then to find the segment boundaries and assign each

segment’s origin. In the global ancestry paradigm (Pritchard et al., 2000; Tang et al., 2005),

we are concerned only with estimating the proportion of ancestry from each contributing

population, considered as an average over the individual’s entire genome. Here we tackle

estimation of global ancestry. We hope to address local ancestry imputation in a future

paper.

Under the broad heading of global ancestry estimation, there are two approaches:

model-based ancestry estimation and algorithmic ancestry estimation. Model-based ap-

proaches, exemplified by structure (Pritchard et al., 2000), frappe (Tang et al., 2005),

and our program admixture, estimate ancestry coefficients as the parameters of a sta-

tistical model. Algorithmic approaches use techniques from multivariate analysis, chiefly

cluster analysis and principal component analysis, to discover structure within the data in
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a less parametric way. Cluster analysis directly seeks the ancestral clusters in the data,

while principal component analysis (PCA) constructs low-dimensional projections of the

data that explain the gross variation in marker genotypes, which in practice is the variation

between populations. eigenstrat (Patterson et al., 2006; Price et al., 2006) is a popular

implementation of PCA for ancestry inference.

Our approach is similar to structure’s. Both programs model the probability of

the observed genotypes using ancestry proportions and population allele frequencies. Like

structure, admixture simultaneously estimates population allele frequencies along with

ancestry proportions.

structure takes a Bayesian approach and relies on a Markov Chain Monte Carlo

(MCMC) algorithm to sample the posterior distribution. We employ the same likelihood

model but focus on maximizing the likelihood rather than on sampling the posterior. Since

high-dimensional optimization is much faster than high-dimensional MCMC, our maximum

likelihood approach can accommodate many more markers. Of course, there is no single

optimization algorithm suited to all occasions. The parameters of the admixture model

must satisfy linear constraints and bounds, and this requirement plus the large number

of model parameters complicates matters. After considerable experimentation, we have

settled on a block relaxation algorithm (de Leeuw, 1994) that alternates between updating

the ancestry coefficient matrix Q and the population allele frequency matrix F . Each

update of Q itself involves sequential quadratic programming, a generalization of Newton’s

method suitable for constrained optimization. Finally, we accelerate convergence of block

relaxation by a novel quasi-Newton method. Once point estimates are found, standard

errors can be estimated, at the user’s option, using the moving block bootstrap (Kunsch,

1989).

Tang et al. (2005) take a similar approach in their program frappe. They adopt the
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same model and estimate parameters by maximum likelihood using an EM algorithm. We

show that frappe’s estimates are slightly inaccurate. These inaccuracies appear to be a

result of frappe’s relaxed convergence criterion. Imposing a strict convergence criterion

renders the EM algorithm computationally burdensome. By contrast, our algorithm is fast

even with very strict convergence criteria.

In the Methods section, we present the underlying statistical model and describe the

optimization techniques employed to maximize the likelihood. We then sketch how we

accelerate convergence. Finally, we review the block bootstrap and describe its use in

estimating parameter standard errors. In the Results section, we compare admixture’s

statistical performance to that of structure and frappe on simulated and real data. We

then briefly examine the numerical behavior of the EM and block relaxation algorithms and

explore the effect the convergence criterion has on the accuracy of the estimates. We also

examine the impact of a certain tuning parameter in quasi-Newton acceleration. We then

compare the runtimes of structure and admixture on the various datasets. The Results

section ends with a simulated association study which shows that admixture performs as

well as eigenstrat at statistically correcting for population structure. In the Discussion,

we summarize our conclusions and suggest further directions for research.

2 Methods

2.1 A Statistical Model

The typical dataset consists of genotypes at a large number J of single nucleotide poly-

morphisms (SNPs) from a large number I of unrelated individuals. These individuals are

drawn from an admixed population with contributions from K postulated ancestral popu-

lations. Population k contributes a fraction qik of individual i’s genome. Allele 1 at SNP
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j has frequency fkj in population k. As a matter of convention, one can choose allele 1 to

be the minor allele and the alternative allele 2 to be the major allele. In our framework,

both the qik and the fkj are unknown. We are primarily interested in estimating the qik to

control for ancestry in an association study, but our approach also yields estimates of the

fkj . Among other things, this allows us to estimate the degree of divergence between the

estimated ancestral populations using the FST statistic.

In the likelihood model adopted by structure, individuals are formed by the random

union of gametes. This produces the binomial proportions

Pr(1/1 for i at SNP j) =
[ ∑

k

qikfkj

]2

Pr(1/2 for i at SNP j) = 2
[ ∑

k

qikfkj

][ ∑
k

qik(1− fkj)
]

(1)

Pr(2/2 for i at SNP j) =
[ ∑

k

qik(1− fkj)
]2

.

Our model makes the further assumption of linkage equilibrium among the markers. Dense

marker sets should be pruned to mitigate background linkage disequilibrium (LD). This

can be done informally, by thinning the marker set according to a minimum separation

criterion or by pruning markers observed to be in linkage disequilibrium on the basis of

common LD summary statistics such as D′ or r2. Neither pruning approach is a perfect

remedy for linkage disequilibrium. Nonetheless, we consider the assumption of linkage

equilibrium to be a useful approximation, one that is commonly employed in model-based

global ancestry estimation methods.

It is convenient to record the data as counts. Let gij represent the observed number

of copies of allele 1 at marker j of person i. Thus, gij equals 2, 1, or 0 according as i has

genotype 1/1, 1/2, or 2/2 at marker j. Since individuals are considered independent, the
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loglikelihood of the entire sample is

L(Q,F ) =
∑

i

∑
j

{
gij ln

[ ∑
k

qikfkj

]
+ (2− gij) ln

[ ∑
k

qik(1− fkj)
]}

, (2)

up to an additive constant that does not enter into the maximization problem. The pa-

rameter matrices Q = {qik} and F = {fkj} have dimensions I ×K and K × J , for a total

of K(I + J) parameters. For the realistic choices I = 1000, J = 10, 000, K = 3, there are

33,000 parameters to estimate. The sheer number of parameters makes Newton’s method

infeasible. The storage space required for the Hessian matrix is prohibitively large, and

the required matrix inversion is intractable.

Note that the loglikelihood (2) is invariant under permutations of the labels of the

ancestral populations. Thus, the loglikelihood has at least K! equivalent global maxima.

In practice, this is a minor nuisance and does not affect the convergence of well-behaved

algorithms. The constraints 0 ≤ fkj ≤ 1, qik ≥ 0, and
∑

k qik = 1 are more significant

hindrances to contriving a good optimization algorithm.

2.2 Point Estimation Algorithms

A wide variety of optimization methods exist. We have already ruled out Newton’s method,

so we now turn to algorithms that avoid manipulation and inversion of large matrices.

Among the prime candidates is the EM algorithm (Dempster et al., 1977) as implemented

in frappe. We have already mentioned that the slow convergence of the EM algorithm

makes it a poor candidate for a fast and highly accurate estimation procedure. A block

relaxation algorithm turns out to be better suited to our purposes. It converges faster,

and faster still under acceleration. We retain the EM algorithm to get us quickly to the

vicinity of the maximum and then shift to accelerated block relaxation.
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2.2.1 FRAPPE’s EM Algorithm

The EM algorithm of frappe updates the parameters via

fn+1
kj =

∑
i gija

n
ijk∑

i gijan
ijk +

∑
i(2− gij)bn

ijk

, (3)

qn+1
ik =

1
2J

∑
j

[
gija

n
ijk + (2− gij)bn

ijk

]
, (4)

where for convenience we define

an
ijk =

qn
ikf

n
kj∑

m qn
imfn

mj

, bn
ijk =

qn
ik(1− fn

kj)∑
m qn

im(1− fn
mj)

.

frappe’s EM algorithm converges slowly, as do many EM algorithms. frappe com-

pensates by employing a fairly loose criterion for convergence. This approach permits fast

termination of the algorithm, but at a cost of less precise parameter estimates. A sim-

ple convergence diagnostic strategy is to declare convergence once successive loglikelihoods

satisfy

L(Qn+1, Fn+1)− L(Qn, Fn) < ε. (5)

frappe uses a convergence criterion that is effectively equivalent to (5) with ε = 1. We

found that frappe’s stopping criterion consistently results in slightly inaccurate estimates.

Consequently, we choose ε = 10−4 as the default stopping criterion in admixture. Such a

strict convergence criterion entails thousands of additional EM iterates, in practice often

taking many more hours of computation on our test problems. This motivates consideration

of non-EM based algorithms.
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2.2.2 Block Relaxation Algorithm

To achieve the goals of fast convergence and highly accurate parameter estimates, we turned

to a block relaxation algorithm. Our block relaxation algorithm alternates updates of the

Q and F parameters. It exploits the fact that the loglikelihood L(Q,F ) (2) is concave in

Q for F fixed and in F for Q fixed. Concavity makes block iteration amenable to convex

optimization techniques. The block updates themselves are found iteratively by repeatedly

maximizing the second-order Taylor’s expansion of L(Q,F ) around the current parame-

ter vector. This technique is commonly referred to as sequential quadratic programming

(Nocedal and Wright, 2000); it coincides with Newton’s method in the absence of con-

straints. For a general function f(x), each step of sequential quadratic programming finds

the increment ∆ = x− xn optimizing the quadratic approximation

f(x) ≈ f(xn) + df(xn)∆ +
1
2
∆td2f(xn)∆

subject to the constraints, and sets xn+1 = xn +∆. Here df(x) and d2f(x) denote the first

and second differentials (transposed gradient and Hessian) of f(x). A linear constraint∑
i aixi = b translates into the linear constraint

∑
i ai∆i = 0, and the bounds ci ≤ xi ≤ di

translate into the bounds ci−xn
i ≤ ∆i ≤ di−xn

i . There are many quadratic programming

methods (Nocedal and Wright, 2000). We use the simple pivoting strategy of Jennrich and

Sampson (1978).

In the current application of block relaxation, the keys to success are the separation of

parameters and the simple functional forms for the first and second differentials of L(Q,F ).

In the Q updates for F fixed, the admixture proportions for each individual i are optimized

separately. In the F updates for Q fixed, the allele frequencies for each SNP are optimized
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separately. The entries of the first differentials are

∂L

∂qik
=

∑
j

[
gijfkj∑
m qimfmj

+
(2− gij)(1− fkj)∑

m qim(1− fmj)

]
,

∂L

∂fkj
=

∑
i

[
gijqik∑

m qimfmj
− (2− gij)qik∑

m qim(1− fmj)

]
.

All entries of the second differentials vanish except for

∂2L

∂qikqil
= −

∑
j

{
gijfkjflj( ∑
m qimfmj

)2 +
(2− gij)(1− fkj)(1− flj)[∑

m qim(1− fmj)
]2

}
,

∂2L

∂fkj∂flj
= −

∑
i

{
gijqikqil( ∑
m qimfmj

)2 +
(2− gij)qikqil[∑
m qim(1− fmj)

]2

}
,

and for mixed partials involving a Q and an F parameter. Fortunately, the mixed partials

do not enter into block relaxation.

The computational complexity for each iteration of this algorithm is O(IJK2), assum-

ing the denominators in the formulas for the differentials are tabulated. The total runtime,

however, depends on the number of iterations required for convergence, which cannot be

formulated in terms of I, J , and K. In the datasets we explore in this paper, we usu-

ally found on the order of tens of iterations necessary, and never more than 200. The

EM algorithm, by contrast, required thousands of iterations to converge according to our

criterion.

Tang et al. (2005) also proposed a block relaxation algorithm similar to ours, which

they found to perform poorly for large marker sets. We believe this is because (a) they

did not take advantage of the block structure of the Hessian matrices within each block

relaxation subproblem, and (b) they handle the parameter bounds differently. By contrast,

our block relaxation scheme vastly outperforms the EM algorithm in all of our experiments.

8



2.2.3 Convergence Acceleration

EM algorithms are known for their slow rates of convergence. Our block relaxation scheme

is faster but still converges fairly slowly. We therefore turn to convergence acceleration.

Considerable thought has been exercised on accelerating EM algorithms (Jamshidian and

Jennrich, 1993; Lange, 1995; Varadhan and Roland, 2008). Here we describe a more generic

method.

Suppose an algorithm is defined by an iteration map xn+1 = M(xn). Since the optimal

point is a fixed point of the iteration map, one can attempt to find the optimal point by

applying Newton’s method to the equation x−M(x) = 0. Because the differential dM(x) is

usually unknown or cumbersome to compute, quasi-Newton methods seek to approximate

it by secant conditions involving previous iterates. Our recent quasi-Newton method (H

Zhou, K Lange, and DH Alexander, in preparation) is motivated by this strategy. It has the

further advantages of avoiding the storage and inversion of large matrices and preserving

parameter linear equality constraints. To keep computational complexity in check, we limit

the number q of secant conditions carried along during acceleration. The ascent property

of the EM algorithm and block relaxation are helpful in monitoring acceleration. Any

accelerated step that leads downhill is rejected in favor of an ordinary step. Accelerated

steps do not necessarily respect boundary constraints, so parameter updates falling outside

their feasible regions need to be replaced by nearby feasible values. This is implemented

by projecting an illegal update to the closest point in the feasible region, which for F and

Q updates is the unit interval and the unit simplex, respectively. We also experimented

with the squared extrapolation techniques of Varadhan and Roland (2008). These show

good performance across a variety of high-dimensional problems. In ancestry estimation,

the quasi-Newton acceleration performs about equally well as their best-performing SqS3

acceleration.
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2.3 Standard Errors

Standard errors for our parameter estimates are calculated using the moving block boot-

strap (Kunsch, 1989). As noted by Tang et al. (2005), bootstrap resampling assuming

independence between observations, when they are in fact correlated, leads to overconfi-

dent (downward-biased) standard errors. The block bootstrap presents a natural way to

account for the serial correlation between SNPs. Rather than resampling individual SNPs,

one resamples blocks of SNPs. Under the block resampling scheme, blocks containing h

consecutive SNP columns from the genotype matrix G are sampled with replacement. A

total of dJ/he such blocks are assembled columnwise, and the first J columns of the assem-

bly are taken as the resampled genotype matrix G∗. The choice of h is tuned to capture

the extent of correlation. Our default setting for h captures an average of 10cM of genetic

distance. This represents the typical span of admixture LD in a population with an ad-

mixture event 10 generations in the past (see Patterson et al., 2004). Our choice of h can

be overridden by the user.

For each bootstrap resample G∗, we re-estimate the parameters, using Q̂ and F̂ as

starting values. Convergence is usually rapid under acceleration. The sample standard

errors of the resulting estimates {(Q̂∗
b , F̂

∗
b )}B

b=1 supply estimates of the parameter standard

errors.

The computational time required for calculating these bootstrap standard errors is

dominated by the parameter estimation for the bootstrap resamples. As a partial remedy,

we have found that the estimation procedure for (Q̂∗
b , F̂

∗
b ) can be stopped after a few

iterations with little loss of accuracy in computed standard errors. Early stopping promotes

computational efficiency. There is a theoretical basis for a related “one-step bootstrap”

procedure (Shao and Tu, 1995) based on Newton’s method. Here we offer empirical results

to suggest that our comparable procedure is sound. Supplementary Figure S2 summarizes
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how the estimates of standard errors perform when re-estimation is terminated after one,

two, or three steps, as compared to standard errors when re-estimation uses our strict

convergence criterion. Termination after three steps yields reliable standard error estimates

and is the default in admixture.

3 Results

3.1 Simulations

To ascertain how accurately admixture recovers admixture coefficients, we performed a

simulation study. As our ancestral populations we chose the HapMap CHB, CEU, and YRI

samples (The International HapMap Consortium, 2005). We considered 13,262 arbitrary

SNPs spaced at least 200 kbp apart and having no more than 5% missing genotypes. The

allele frequencies seen in the unrelated individuals of the three populations were used as

the true values for the F matrix. The true values for the matrix Q of admixture coefficients

were constructed by sampling from several different probability distributions on the unit

simplex

S2 = {qi : qi1 + qi2 + qi3 = 1}.

In this manner we generated admixture coefficients for 1,000 simulated individuals in each

experiment. The simulated genotype vector G was then constructed according to the

binomial model (1). For each experimental realization of Q, we measured the accuracy of
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the estimates Q̂ and F̂ by the estimated root mean squared error

R̂MSE (F̂ ) =
√

1
JK

∑
j

∑
k

(f̂jk − fjk)2,

R̂MSE (Q̂) =

√
1

IK

∑
i

∑
k

(q̂ik − qik)2

criteria. For the first set of experiments, we generated the qi independently from various

symmetric Dirichlet distributions Dir(α, α, α). Here the parameter α reflects the degree of

admixture. When α < 1, most individuals show little admixture, while when α > 1, the

opposite is true. structure uses these restricted Dirichlet distributions as priors on the

admixture coefficients. Our analysis results, summarized in Table 1, indicate that both

admixture and structure provide fairly good estimates of Q and F , with the largest

RMSEs being on the order of 0.025 for the case of α = 1. frappe’s estimates were slightly

worse in all cases, most noticeably for the Q parameters. In the second set of experiments,

we generated the qi independently from asymmetric Dirichlet distributions Dir(α, β, γ).

Again, the results indicate that both admixture and structure provide good estimates

of Q and F , while frappe’s estimates are slightly worse. The greater inaccuracies of

frappe’s estimates appear to stem from its convergence criterion. We will revisit this

point further shortly.

3.2 Real Datasets

3.2.1 HapMap Phase 3

Phase 3 of the HapMap Project (The International HapMap Consortium, 2005) contains

genotypes for individuals from additional populations. Of particular interest here, indi-

viduals with Mexican ancestry were sampled in Los Angeles (MEX) and individuals with

African ancestry were sampled in the American Southwest (ASW). We chose a subset
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of the 1,440,616 available markers according to our two previous criteria: (a) to minimize

background linkage disequilibrium, adjacent markers must be no closer than 200 kbp apart,

and (b) no more than 5% of the genotypes must be missing. Based on the genotypes for

these markers for the unrelated individuals from the CEU, YRI, MEX, and ASW samples,

we constructed a dataset of 13,298 markers typed on 324 individuals. Henceforth we re-

fer to this dataset as HapMap3. To avoid complications stemming from missing data, we

imputed all missing genotypes prior to performing the statistical analyses discussed below.

Figure 1 summarizes the results of analyzing HapMap3 with admixture, structure,

and eigenstrat. admixture, like structure and eigenstrat, resolves the CEU and

YRI samples and identifies the ASW sample as an admixture between the YRI and CEU

samples, and the MEX sample as an admixture between the CEU sample and a third ances-

tral population. These results are in line with current understanding of human population

genetics (Jakobsson et al., 2008; Li et al., 2008). Historically, we would expect the third

population for the MEX sample to represent one or more of the Native American groups

from Mexico, from whom present-day Mexicans derive their non-European ancestry. It

is interesting that the inferences about the MEX group made by admixture differ from

those of structure. structure places the MEX sample centrally between the CEU

and the third ancestral population, while admixture places the MEX group further to-

wards the third population. As noted by Tang et al. (2005), the admixture model tends to

have difficulty identifying ancestral populations when the dataset contains no individuals

of unmixed ancestry. This problem is common to structure, frappe, and admixture.

Inclusion of individuals from appropriate Native American groups to serve as proxies for

the ancestral population could resolve questions involving the true degree of admixture in

the MEX sample.

Although it may be of scientific interest to know the degree of admixture, the differences
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between the estimates found here are of little consequence in structured association testing.

In fact, it appears that the estimates of qi2 from structure and admixture are equivalent

up to a change of scale. They are certainly highly correlated, with an R2 value of 0.9998.

3.2.2 Inflammatory Bowel Disease Dataset

The Inflammatory Bowel Disease (IBD) dataset consists of 912 European American con-

trols genotyped as part of an IBD study conducted by the New York City Health Project

(Mitchell et al., 2004). Subjects were genotyped on an Illumina HumanHap300. In addi-

tion to their genotypes, many of these individuals reported their ancestry. The availability

of self-reported ancestry has made this dataset appealing to researchers studying popula-

tion stratification. For instance, Price et al. (2008) analyzed it with eigenstrat in their

study of European ancestry. They concluded that New Yorkers of European ancestry can

be represented as an admixture of three ancestral populations: a northwestern European

population, a southeastern European population, and an Ashkenazi Jewish population.

Unfortunately, the IBD dataset contains very few individuals of southeastern European

ancestry. Inference of the existence of this third ancestral population group required Price

et al. to perform a meta-analysis combining the IBD dataset with other datasets that

include substantial numbers of individuals from Greece and Italy.

We performed our own analysis of the IBD dataset using admixture, structure,

and eigenstrat on a subsample of 9,378 of the available genotypes selected according

to our previously stated criteria. Results are summarized in Figure 2. The self-reported

ancestries of the sample individuals were classified according to criteria from Price et al.

(2008) as IBD-AJreport (Ashkenazi Jewish), IBD-NWreport (northwestern European), or

IBD-SEreport (southeastern European), and these classifications were used to color-code

the figure. admixture and structure, run with K = 3, easily differentiate the north-
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western European and Ashkenazi Jewish individuals, but they do not clearly cluster the few

individuals self-reporting southeastern European ancestry. Nor does eigenstrat identify

the southeastern European individuals as a distinct cluster. Given the small number (nine)

of such sample individuals, this suggests that all three of these statistical approaches have

difficulty resolving ancestry clusters represented by a very small number of individuals.

Since it might be argued that K = 3 ancestral populations incorrectly models the IBD

data, we repeated our analysis assuming K = 2 ancestral populations. For eigenstrat,

note that choosing K = 2 corresponds to using only the first principal component. The

results from this second round of analysis are shown in Figure 3. All three programs

identify the Ashkenazi Jewish and northwestern European clusters for the self-reported

individuals. The estimates from the programs were strongly correlated; R2 values were

0.988 (admixture and structure), 0.999 (admixture and eigenstrat), and 0.987

(structure and eigenstrat). However, R2 values do not tell the whole story. Pair-

wise scatterplots between the estimates (not shown) reveal that structure’s ancestry

estimates are more skewed toward the boundaries 0 and 1 than admixture’s estimates.

This behavior can be attributed to structure’s prior. Despite the small differences in

ancestry estimates, the current analysis supports our claim that admixture, structure,

and eigenstrat yield comparable results when applied to simple cases of admixture.

We note that for the IBD dataset with K = 3, structure’s Markov chain required

roughly 10,000 burnin iterations to converge to its stationary distribution. By contrast we

found 2,000 burnin iterations to be roughly sufficient for our other analyses with struc-

ture. Supplementary Figure S1 depicts the trajectory of structure’s Dirichlet parame-

ter α for the IBD dataset with K = 3 versus K = 2 ancestral populations.
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3.3 Comparison of Maximum Likelihood Point Estimation Algorithms

admixture offers the user a choice of two point estimation algorithms: our block relax-

ation algorithm (the default) and a reimplementation of frappe’s EM algorithm. Our

convergence acceleration technique is applicable to either algorithm. For both algorithms

we use the convergence diagnostic (5) with the strict criterion ε = 10−4. As documented in

Table 2a, the EM algorithm converges much more slowly than block relaxation. Even accel-

erated EM cannot match the speed of unaccelerated block relaxation. A strict convergence

criterion clearly renders the EM algorithm computationally burdensome.

We also explored the effect of the convergence criterion employed by frappe. Although

a loose convergence criterion will allow the estimation algorithm to terminate faster, it

may jeopardize the accuracy of the resulting estimates and encourage bias. Indeed we

note in Table 2a that the unaccelerated EM algorithm terminated much faster with the

loose criterion than with the strict criterion. The estimates Q̃ and F̃ found with the

EM algorithm and loose convergence criterion had a slightly lower loglikelihood than the

maximum likelihood estimates Q̂ and F̂ found with the block relaxation algorithm and

strict convergence criterion (L(Q̃, F̃ ) = −9,183,774, versus L(Q̂, F̂ ) = −9,183,720, an

absolute difference of 54). Estimated parameters also diverged substantially. Comparing

the first components of the estimated admixture vectors, q̃i1 and q̂i1, we found that the

median of |q̃i1−q̂i1| was 0.072. In other words, for half of the individuals in the IBD dataset,

the ancestry fraction attributed by frappe’s EM algorithm to the first population was off

by at least 0.072. Similar results were found for other datasets.

Note that our unaccelerated block relaxation algorithm under strict convergence runs

faster than the EM algorithm under loose convergence. Our accelerated block relaxation

algorithm converges faster still. In short, admixture quickly delivers highly accurate

parameter estimates. Our quasi-Newton acceleration depends on the number q of secant
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conditions employed. Table 2b suggests that the degree of acceleration is fairly insensitive

to the exact value of this tuning constant. Although admixture’s default value of q = 3

works well in practice, the user can override this choice.

3.4 Runtime Comparison

It is difficult to make a direct comparison of runtimes between admixture and structure.

With structure, both the number of burnin iterations and the number of subsequent

sampling iterations following burnin are configurable parameters set by the user. The

proper values for these configuration parameters are essentially problem-dependent, but the

structure documentation (Pritchard et al., 2007) advises that 10,000 to 100,000 burnin

iterations are usually adequate for convergence to stationarity. The documentation also

suggests that stationarity can be diagnosed by manually inspecting the periodic printouts

of summary statistics, such as FST distances between inferred populations, for hints that

the chain has stabilized.

Second, we have made a conscious decision to provide standard errors rather than

interval estimates because most users will be satisfied with the point estimates, and accurate

confidence intervals require significantly more bootstrap iterations than accurate standard

errors. Conventional wisdom in the bootstrap literature (Efron and Tibshirani, 1993)

suggests that accurate interval estimation requires on the order of thousands of bootstrap

samples, while accurate standard error estimation requires on the order of hundreds.

We are thus hesitant to make a definitive statement regarding the speed of admixture

versus structure. Let us simply state that in the experiments we have run on a 2.8GHz

Intel Xeon computer on datasets with around 1,000 individuals and 10,000 markers, we

have found that point estimation with admixture typically took on the order of minutes,

while point estimation with structure took on the order of hours. This is true even
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with a relatively small number of MCMC iterations, considerably fewer than advised by

structure’s documentation. Our runtime results are summarized in Table 3.

The choice of K impacts the runtimes of both structure and admixture. The time

it takes for either program to run is the product of the mean time per iteration and the

number of iterations. The time per iteration scales as O(K2) for admixture and as O(K)

for structure (Falush et al., 2003) when I and J are held fixed. The number of iterations

to convergence also tends to increase when K is increased. For example, Supplementary

Figure S1 shows that convergence to stationarity for structure takes roughly 10,000

MCMC burnin iterations for K = 3 in the IBD dataset, compared to 2,000 for K = 2.

Likewise, admixture requires 153 iterations to converge for K = 3 compared to 23 for

K = 2. Generally, we have observed that the number of iterations to convergence increases

sharply when a value for K is chosen that is poorly supported by the data. This is precisely

the situation with the IBD dataset, where there seems to be strong support for only two

ancestral populations.

The runtimes of admixture and eigenstrat are on the same order of magnitude.

Indeed, on most of the datasets we have considered, admixture’s runtime was less than

twice that of eigenstrat, though we note that eigenstrat can be made to run faster by

disabling outlier detection.

3.5 Simulated Association Studies

Following Price et al. (2006), we simulated association studies to illustrate how the ancestry

estimates from admixture can be used to correct for population structure. Our simulation

methods exactly parallel those described in their Table 1, so for the sake of brevity we omit

simulation specifics and mention only highlights. An overview of our four experiments

with two ancestral populations appear in the caption of Table 4. We performed “naive”

18



association tests ignoring ancestry, as well as association tests incorporating either an

estimate of ancestry (admixture and eigenstrat columns) or the true ancestry value

(“Ideal” column). Ancestry estimates were based on 100,000 markers that were not tested

for association. The significance level used was 0.0001.

Price et al. (2006) corrected for population structure by replacing both phenotypes and

genotypes with the residuals formed by linear regression on the ancestry estimates. They

then performed a modified Armitage trend χ2 test for association. We took the alternative

approach of including ancestry as an additional predictor within a logistic regression model,

where the first predictor for individual i is the minor allele count gi at the locus in question.

For admixture, K−1 of the K entries of the individual ancestry estimate vector q̂i should

be used as predictors. With eigenstrat there is in principle no restriction on the number

of principal components that can be used. Here we used a single entry from admixture’s

estimate and the top principal component from eigenstrat. Use of additional principal

components did not improve the results noticeably.

Each of our four experiments was conducted ten times, with the average proportions

of SNPs declared significant shown in Table 4. These results suggest that in simple cases

of population structure, corrections using eigenstrat and admixture perform equally

well, in terms of both observed Type I error and power. Corrections using eigenstrat

and admixture both restored the observed Type I error rate to roughly the nominal

level, while achieving essentially the same level of power attained by the “Ideal” analysis

based on the true ancestry. The agreement between admixture and eigenstrat is a

natural consequence of the high concordance we found between their ancestry estimates.

The squared correlation coefficients between the estimates from the two programs were

> 0.9999 in all of the experiment runs we performed. A more detailed discussion of these

results can be found in the Supplementary Material.
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4 Discussion

Our studies on simulated and real datasets show that admixture performs as well as

structure in ancestry estimation and runs considerably faster. admixture’s large speed

advantage over structure opens up the possibility of using large sets of arbitrarily selected

markers for ancestry determination, rather than focusing on a small number of ancestry-

informative markers (AIMs) known a priori to have different allele frequencies in different

populations. Since many populations, human and otherwise, have not been genotyped,

AIMs are often unknown. Fortunately the ancestral allele frequency estimates output by

admixture allow AIMs to be readily identified.

admixture’s speed in generating point estimates stems from the use of a relatively fast

block relaxation strategy, coupled with quasi-Newton convergence acceleration. Interval

and standard error estimation is costly for both admixture and structure. We perform

bootstrapping, while structure performs MCMC sampling. Both are computationally

intensive. Our speed advantage with standard error estimation activated is due to a combi-

nation of (a) good starting values, (b) a judicious stopping rule in parameter estimation for

each bootstrap resample, and (c) our decision to compute standard error estimates rather

than confidence intervals.

Choice of an appropriate value for K is a notoriously difficult statistical problem. It

seems to us that this choice should be guided by knowledge of a population’s history. Be-

cause experimentation with different values of K is advisable, admixture prints values of

the familiar AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion)

statistics, widely applied in model selection.

admixture’s model does not explicitly account for linkage disequilibrium (LD) between

markers. The original version of structure also lacked support for markers in LD, as does

frappe, but structure 2.0 includes a linkage model capturing admixture LD but not
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background LD. Falush et al. (2003) break LD down into three components: mixture LD,

attributable to the variation in ancestry between individuals, admixture LD, attributable

to recent admixture events, and background LD, attributable to population history. While

thinning marker sets is beneficial in dealing with background LD, it is relatively helpless in

ameliorating admixture LD, which can extend orders of magnitude farther than background

LD in recently admixed populations. In datasets where admixture LD is a significant factor,

our likelihood can be considered a useful and tractable approximation. While the resulting

estimates may be subject to some bias, we believe the biases stemming from unmodeled

LD pose greater problems in local ancestry estimation than here. Another concern is the

underestimation of standard errors using simple bootstrap tactics. Here the block bootstrap

is a major corrective.

The speed of admixture is on par with eigenstrat’s implementation of PCA, so ge-

neticists can now choose a method for summarizing population structure based on consid-

erations of statistical appropriateness alone. The model-based and PCA-based approaches

are complementary; each offers its own advantages. PCA has the advantage of robustness.

It does not specify an exact model and so may be more suitable in situations where the

simple admixture model does not hold, for instance when a population shows continuous

spatial structure (Novembre et al., 2008; Novembre and Stephens, 2008). Model-based

estimates are more directly interpretable than PC coordinates and come with attached

precisions. The model-based approach also directly provides allele frequency estimates for

the ancestral populations.

Despite these differences, our analyses of real and simulated data show a high degree

of concordance between the estimates from admixture and eigenstrat. In particular,

we have observed a strikingly high degree of linear correlation between ancestry estimates

from the two programs. Thus, while the two approaches are complementary, in simple
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settings the resulting estimates are equally useful for statistical correction in association

studies. More complicated population structure may reveal differences between the two

programs’ estimates.

In summary, we have presented a fast new algorithm and software suitable for inferring

ancestry of individuals from stratified populations based on genotypes at a large num-

ber of arbitrary SNP markers. Our program admixture is available as a stand-alone

program and will soon also be available within the Mendel package. See the web site

http://www.genetics.ucla.edu/software for a free download.
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qi ∼ Dir(.1, .1, .1)
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R̂MSE (F̂ , Q̂) R̂MSE (F̂ , Q̂) R̂MSE (F̂ , Q̂)
structure .023, .027 .018, .017 .014, .008
admixture .022, .026 .018, .016 .014, .008

frappe .022, .036 .020, .033 .014, .016

Simulation 4 Simulation 5 Simulation 6
qi ∼ Dir(.2, .2, .05)
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R̂MSE (F̂ , Q̂) R̂MSE (F̂ , Q̂) R̂MSE (F̂ , Q̂)
structure .018, .010 .017, .012 .019, .006
admixture .018, .009 .017, .014 .019, .006

frappe .019, .018 .018, .017 .019, .017

Table 1
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Algorithm Runtime

EM 21:33
EM (ε = 1) :34
EM (accel) :44
Block :16
Block (accel) :04

(a)

q Runtime

0 :16
1 :04
2 :05
3 :04
4 :04
5 :03
6 :04
7 :03

(b)

Table 2
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Point Point & Interval

Dataset admixture structure admixture structure

Simulation 1 :07 7:34 4:07 13:20
Simulation 2 :08 7:43 4:14 15:39
Simulation 3 :05 8:16 4:45 10:22
Simulation 4 :08 9:34 4:18 13:26
Simulation 5 :08 9:22 4:28 11:18
Simulation 6 :06 7:24 4:29 10:23
HapMap3 :04 1:13 2:07 1:57
IBD (K=2) :05 5:03 2:04 5:39
IBD (K=3) :42 20:06 2:59 23:39

Table 3
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Average proportion of SNPs found significant

Naive Ideal eigenstrat admixture

Discrete populations
I. Random SNPs .0008 .0001 .0001 .0001

Differentiated SNPs .8522 .0001 .0001 .0001
Causal SNPs .5120 .4935 .4935 .4935

II. Random SNPs .3630 .0001 .0001 .0001
Differentiated SNPs 1.0000 .0001 .0001 .0001
Causal SNPs .5081 .2660 .2688 .2688

Admixed population
III. Random SNPs .0003 .0001 .0001 .0001

Differentiated SNPs .2811 .0001 .0001 .0001
Causal SNPs .5186 .4862 .4863 .4863

IV. Random SNPs .0009 .0001 .0001 .0001
Differentiated SNPs .9100 .0001 .0001 .0001
Causal SNPs .5167 .4367 .4368 .4368

Table 4
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List of Figures

1 Analyses of the HapMap3 dataset. K = 3 for admixture and structure.
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individuals, conditioned on self-reported ancestry. Only individuals self-
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B. STRUCTURE
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C. EIGENSTRAT

Figure 3


